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1 normal domains
Definition 1 (Normal domains). Let A be an integral domain and K = Frac(A). If A is
integral closed in K then we say A is normal. For instance, a principal ideal domain is
normal.

The localizations of normal integral domains are also normal, and an integral domain is
normal iff all of its localizations are normal.

Proposition 1. Let A be an integral domain. TFAE

1. A is normal

2. Ap is normal for every prime p

3. Am is normal for every maximal prime m

Proof. 1⇒ 2: Suppose we have

an +

n−1∑
i=0

bia
i = 0
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where a ∈ K = Frac(a) and bi ∈ Ap. Then we can find s ∈ A\p s.t. sbi ∈ A for all i. Then

(sa)n +

n−1∑
i=0

bi · sn−i(sa)i = 0

Hence we have sa ∈ A, hence a ∈ Ap.
2 ⇒ 3:obvious. 3 ⇒ 1: Notice that the arbitrary intersection of integral closed domains

are also integral closed. And we have

A =
⋂

m max
Am

We now introduce a conception close to integral.

Definition 2 (Almost integral). Let A be an integral domain and K = Frac(A). We say that
k ∈ K is almost integral over A if there exists a ∈ A s.t. akn ∈ A for all a.

Proposition 2. If k is integral over A then it’s also almost integral over A. If A is Noetherian then
the converse also holds.

Proof. Suppose we have

kn +

n−1∑
i=0

aik
i = 0

where ai ∈ A. We can find b ∈ A s.t. bki ∈ A for all i 6 n. By induction we can show that
b is exactly the element we want.

If A is Noetherian, then A[k] is a submodule of a−1A, hence is f.g. Therefore k is integral
over A.

Definition 3 (Completely Normal). We say that an integral domain A is completely normal
if every element k ∈ K = Frac(A) which is almost integral over A belongs to A.

In order to show that A[X] is normal (resp. completely normal) if A is normal (resp. cpt
normal), we need the following lemma.

Lemma 1. Let A be a domain and K = Frac(A). Suppose f =
∑
αixi ∈ K[X].

1. If f is almost integral over A[X], the all αi are a.i. over A

2. If f is integral over A[X], then all αi are integral over A

Proof. 1. Suppose that there exists g =
∑
βix

i ∈ A[X] s.t. gfi ∈ A[X] for all i > 0. Then
αinβn ∈ A for all i > 0. Hence αn is a.i. over A. Hence f− αnxn is a.i. over A and by
induction we win.
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2. Suppose αi = ai/bi. Suppose P(t) = td +
∑
i<d fit

i s.t. P(f) = 0 and fi ∈ A[X]. Let
A0 be the subring generated by 1,bi,ai and all the coefficients of those fi. Then A0 is
the image of Z[X1, · · · ,Xm] for some m and thus Noetherian. Since f ∈ Frac(A0[X]) is
integral over A0[X], it’s also a.i. over A0[X] and hence all the αi are a.i. over A0, which
means αi are integral over A0 since A0 is Noetherian.

Then we can show that normality and cpt normality are stable under taking polynomial
rings.

Proposition 3. 1. Let A be a completely normal domain. Then both A[X] and A[[X]] are com-
pletely normal.

2. Let A be a normal domain. Then A[X] is a normal domain.

3. Let A be a Noetherian normal domain. Then A[[X]] is a Noetherian normal domain.

Proof. Let K = Frac(A), then K[X] is a PID. Hence it’s normal and completely normal. And
a element in Frac(A[X]) that is integral or a.i. over A[X] should lie in K[X]. Now by the
previous lemma we know that all the coefficients of this element are contained in A. Thus
A[X] is normal (resp. cpt normal) if A is normal (resp. cpt normal).

In the same way we can show that f ∈ K[[X]] is a.i. over A iff all the coefficients are a.i.
over A. And since K[[X]] is also a PID, the conclusion holds. As for the last assertion, it’s a
direct corollary of the cpt normal case.

Remark. There exists a normal ring A s.t. A[[X]] is not normal. Here is a counterexample.

2 normal rings
Definition 4 (Normal rings). A ring R is called normal if for every prime p ⊂ R the local-
ization Rp is a normal domain.

Proposition 4. A normal ring must be reduced, because the ideal of all the nilpotent elements has
empty support.

Proposition 5. Let R be a normal ring, Then R[X] is also a normal ring. Let P ⊂ R[X] be a prime
and p = P ∩ R. Hence R[X]P is a localization of Rp[X], hence it is a normal domain.

Proposition 6. If a ring R is normal, then it’s integrally closed in its total ring of fractions Q(R).

Proof. Let R be a normal ring. Suppose u ∈ Q(R) is integral over R. Let I = {x ∈ R|xu ∈ R}.
It suffice to show I is not contained in any prime ideal of R. Let p ⊂ R be a prime. Since
R → Rp is flat, tensor R → Q(R) with Rp we have Rp ⊂ Q(R)⊗ Rp. Since Rp is a normal
domain, u× 1 ∈ Rp. Suppose u× 1 = a⊗ 1/f for a ∈ R and f ∈ R\p. Then fu− a maps to
zero in Q(R)p. Hence there exists f ′ ∈ R\p s.t. f ′fu = f ′a ∈ R. Hence ff ′ ∈ I. Since f, f ′ /∈ p,
ff ′ /∈ p and I $ p.

https://math.stackexchange.com/questions/202203/formal-power-series-ring-over-a-valuation-ring-of-dimension-geq-2-is-not-inte
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Then we begin to explore the structure of normal rings.

Proposition 7. A finite product of normal rings is normal.

Proof. Let R,S be normal rings. Every primes of R × S are of the form R × p or q × S.
Hence we have (R× S)q×S = Rq ,which is a normal domain. The other condition is also the
same.

We need some results about total ring of fractions of a reduced ring before the structure
theorem.

Lemma 2. 1. If R is a reduced ring. Then

a) if p is a minimal prime of R, then Rp is a field.

b) R is a subring of product of fields.

c) R→
∏
p minimal Rp is an embedding into the product of fields.

d) ∪p minimal p is the set of zerodivisors of R.

2. Let R be a ring. Assume that R has finitely many minimal primes q1, · · · , qt, and that ∪qi is
the set of zerodivisors of R. Then the total ring of fractions Q(R) is equal to Rq1 × · · · × Rqt .

Proof. 1. a) Every elements of pRp is nilpotent, and hence pRp = 0.

b) The kernel of R→ Rp is p, and we have ∩p = 0. Hence we conclude both (b) and
(c).

c) As above.

d) If xy = 0 and y 6= 0, then y 6= p for some minimal prime p. Hence x ∈ p. Thus if
y not contained in any minimal primes we have x = 0. On the other hand, since
pRp = 0 for all minimal prime p, every element in p is zerodivisor. (Notice that
we don’t have the hypothesis of being Noetherian here.)

2. There is a natural maps Q(R) → Rqi since any nonzerodivisor is contained in R\qi.
Hence there exists Q(R) → Rq1 × · · · × Rqt . For any nonminimal prime p ⊂ R, it
must not contained in ∪qi. Thus p must have a nonzerodivisor. Hence Spec(Q(R)) =

{q1, · · · , qt}. Therefore Spec(Q(R)) is a finite discrete set and it follows that Q(R) =

A1× · · · ×At with Spec(Ai) = {qi}. Moreover Ai is a local ring, which is a localization
of Q(R) and hence R. It’s also a subset of Rqi . Hence Ai ' Rqi .

Theorem 1 (The structure of normal rings). Let R be a reduced ring with finitely many minimal
primes(for instance when R is Noetherian). TFAE

1. R is normal

2. R is integrally closed in its total ring of fractions

3. R is a finite product of normal domains
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Proof. Obviously we have 1 ⇒ 2 and 3 ⇒ 1. It suffice to show 2 ⇒ 3. By the lemma
we have Q(R) '

∏
p minimal Rp. If R is integrally closed, then it must contain every ei =

(0, · · · , 1, · · · , 0). Hence it’s a product of domains. Every factor of the form R/q with fraction
of field Rp. Hence by the lemma below, all the map R/q→ Rp is integrally closed. And the
assertion holds.

Lemma 3. Let R =
∏
Ri and S =

∏
Si and Ri → Si be ring morphisms. s = (si) ∈ S is integral

over R iff each si is integral over Ri.

At the last of this section, we will show the going down theorem holds for integral
extension over normal rings. But at first we need some technical preparation. For the
details of the proof, here is the reference.

Definition 5 (Integral over an ideal). Let φ : R → S and I ⊂ R be an ideal. We say s ∈ S is
integral over I if there exists P = xd +

∑
i<d aix

i with coefficients ai ∈ Id−i s.t. Pφ(g)0 on S.

We give some characterization of the elements that integral over I.

Lemma 4. Let φ : R→ S and I ⊂ R be an ideal.

1. Let A =
∑
Intt ⊂ R[t] be the subring of polynomial ring generated by R⊕ It. s ∈ S is

integral over I iff st ∈ S[t] is integral over A.

2. The set of elements of S that are integral over I form a R-submodule of S. Furthermore, if
s ∈ S in integral over R and s ′ integral over I, then ss ′ is integral over I.

3. If φ is integral. Then every element of IS is integral over I.

Lemma 5. Let K be a field. And a0, · · · ,an−1,b0, · · · ,bm−1 ∈ K. If the polynomial xn +∑
i<n aix

i divides xm +
∑
j<m bjx

j in K[X]. Then

1. a0, · · · ,an−1 are integral over any subring R0 of K containing the elements b0, · · · ,bm−1

2. each ai lies in
√
(b0, · · · ,bm−1)R for any subring R ⊂ K containing the elements a0, · · · ,an−1

and b0, · · · ,bm−1.

Proposition 8. Let R ⊂ S be an inclusion of domains. Assume R is normal. Let g ∈ S be integral
over R. Then the minimal polynomial of g has coefficients in R.

Now we conclude the going down theorem holds.

Theorem 2 (Going down for integral over normal rings). Let R ⊂ S be an inclusion of domains.
Assume R is normal and S integral over R. Let p ⊂ p ′ ⊂ R be primes. Let q ′ be a prime of S with
p ′ = R∩ q ′. Then there exists a prime q with q ⊂ q ′ such that p = R∩ q.

https://stacks.math.columbia.edu/tag/037E
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Proof. Notice that if p = φ−1(pS), then we have injection Rp/pRp → Sp/pSp, and hence
S⊗ κ(p) 6= 0, thus p is in the image of Spec(S)→ Spec(R) and the conclusion holds. Hence
it suffice show that p = φ−1(pSq ′).

Let z = y/g ∈ pSq ′ ∩ R, where y ∈ pS and g ∈ S\q ′. Since pS is integral over p by the
lemma, there exists a monic polynomial P = xm +

∑
i<m bix

i with bi ∈ p s.t. P(y) = 0.
Also by the lemma, the minimal polynomial of g over K has coefficients in R. Write it as
Q = xn +

∑
j<n aix

i. Note that not all ai ∈ p, otherwise gn ∈ q ′.
Since y = zg we see that Q ′ = xn + zan−1xn−1 + · · ·+ zna0 is the minimal polynomial for

y. Hence Q ′ divides P and we see that zjan−1 ∈
√

(b0, · · · ,bm−1) ⊂ p for all j = 1, · · · ,n.
Because not all ai ∈ p, we conclude z ∈ p as desired.

3 regular local rings
Definition 6 (Orders and Leading Terms). Let A be a ring and I be an ideal with ∩In = (0).
Then for each a 6= 0 ∈ A, we define the order of a to be the maximal integral s.t. a ∈ In
and a /∈ In+1. We have ord(a+ b) > min(ord(a),ord(b)) and ord(ab) > ord(a) + ord(b)).
Let A ′ = gtI(A) = ⊕In/In+1. We define the leading term of a to be the imagine a∗ of a in
In/In+1.

Let Q be an ideal of A, the Q∗c is a graded ideal of A∗. We define A = A/Q and
I = I+Q/Q. Then we have grI(A) = grI(A)/Q∗.

Theorem 3 (Krull). Let A, I,A ′ be as above. Then

1. If A ′ is a domain, so is A.

2. Suppose that A is Noetherian and I ⊂ rad(A). Then if A ′ is a normal domain, so is A.

Remark. It can happen that A is a normal domain while A ′ is not a domain.

Proposition 9. Let (A,m,k) be a Noetherian local ring. Then A is regular iff gr(A) is isomorphic
to the polynomial ring k[X1, · · · ,Xd].

Proof. On one hand, if gr(A) is isomorphic to k[X1, · · · ,Xd]. Then we have rankkm/m2 = d
and dimA = d. Hence it’s regular.

On the other hand, let k[X1, · · · ,Xd] → gr(A) be surjective with kernel I, which is a
homogeneous ideal. Suppose f ∈ I is a homogeneous polynomial of deg n0. Then for n
large enough we have `(A/mn+1) 6

(
n+d
d

)
−
(
n+d−n0

d

)
, hence it is a polynomial of deg less

than d− 1. Thus it contradicts our assumption.

Proposition 10. Let (A,m) be a regular local ring and x1, · · · , xd a regular system of parameters.
Then

1. A is a normal domain
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2. (x1, · · · , xi) = pi is a prime ideal of height i for each i 6 d, and A/pi is a regular local ring
of dimension d− i.

3. x1, · · · , xd is an A-regular sequence. Hence A is a Cohen-Macaulay local ring.

4. If p is an ideal of A and A/p is regular with dimension d − i, then there exists a regular
system of parameters y1, · · · ,yd s.t. p = y1, · · · ,yi.

Proof. 1. It’s the corollary by the Krull’s theorem and the proposition above.

2. We have dimA/pi = d− i. Therefore A/pi is regular and hence by (1) we know pi is
a prime.

3. It is a direct conclusion by 2.

4. We have d − i = rankkm/m
2 − rankkm

2 + p/m2, hence i = rankkm
2 + p/m2. We

can choose i elements y1, · · · ,yi ∈ p that generated m2 + p/m2. And d− i elements
yi+1, · · · ,yd in m s.t. y1, · · · ,yd generated m. Thus we get a system of parameters.
Since (y1, · · · ,yi) ⊂ p and both of them have dimension d − i. We conclude p =

(y1, · · · ,yi).

3.1 Regular local ring of dimension 1

Proposition 11. A regular local ring of dimension 1 is a discrete valuation ring, and vice versa.

Remark. The only Noetherian valuation rings are discrete valuation rings.

We still have another characterization of regular local ring of dimension 1. Namely a
Noetherian local ring of dimension 1 is regular iff it’s normal. But we need to show a few
lemmas before the proof.

Lemma 6. 1. Let A be a Noetherian domain and K = Frac(A). For any ideal I 6= 0, we define
I−1 = {x ∈ K|xI ∈ A}. Let 0 6= a ∈ A and p ∈ AssA(A/aA), then p−1 6= A.

2. Let (A, p) be a Noetherian local domain s.t. p 6= 0 and pp−1 = A. Then p is a principal ideal,
thus A is regular of dimension 1.

Proof. 1. There exists b ∈ A s.t. (aA : b) = p. Hence (b/ap ⊂ A and b/a /∈ A.

2. Since ∩pn = 0, we have p 6= p2. Let a ∈ p − p2. Then ap−1 ⊂ A and if ap−1 ⊂ p, then
aA = ap−1p ⊂ p2, contradicting the assumption. Thus ap−1 = A. Hence aA = p.

Theorem 4. Let (A, p) be a Noetherian local ring of dimension 1. Then A is regular iff it’s normal.
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Proof. Only if: Trivial.
If: It suffice to show pp−1 = A. Suppose that pp−1 = p, then p(p−1)n = p ⊂ A for any

n > 0. Hence all the elements of p−1 are almose integral over A, hence integral over A since
A is Noetherian. Therefore we have p−1 = A. Since dimA = 1, we have p ∈ Ass(A/aA) for
any a 6= 0. Hence p−1 6= A and we win.

Corollary 1. Let A be a Noetherian normal domain. Then any non-zero principal ideal is unmixed,
and we have

A =
⋂

ht(p)=1

Ap

If dimA 6 2 then A is C.M.

Proof. Let a ∈ A and p ∈ Ass(A/aA). WLOG we assume that (A.p) is local. Then p−1 6= A.
If ht(p) > 1 then ????????????

3.2 Serre’s conditions

Definition 7 (Serre’s Conditions). Let A be a Noetherian ring, we define the following
conditions:

(Sk) for any prime p we have depthApAp > min{k,ht(p)}.

(Rk) for any prime p with ht(p) 6 k, then Ap is regular.

We list a few conclusions about Serre’s conditions:

Proposition 12. 1. A satisfies S1 iff Ass(A) has no embedded primes

2. A satisfies S2 iff bothAss(A) andAss(A/fA) for any nonzerodivisor f ∈ A have no embedded
primes

3. A satisfies Sk for every k iff it’s C.M.

4. A satisfies S1 and R0 iff it’s reduced

5. A satisfies S2 and R1 iff it’s normal

Proof. 1. Suppose Ass(A) has no embedded primes, then any prime p with ht(p) > 1 has
at least one nonzerodivisor of A. Otherwise it should be contained in some minimal
prime. Thus the condition S1 holds. Conversely if S1 holds, then pAp has at least one
nonzerodivisor for any prime p with height no smaller than 1. Therefore we have
pAp /∈ Ass(Ap) and hence p /∈ Ass(A). Thus Ass(A) has no embedded prime.

2. Notice that any prime p in A/fA corresponds to a prime p ′ with ht(p ′) = ht(p) + 1.

3. Trivial.
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4. If A is reduced, then Ap is a field for every minimal prime p. And we have⋃
p minimal

p = The zerodivisors of A

Therefore A has no embedded primes.

Conversely, if A satiesfies S1 and R0, then we show Ap is reduced by induction on
ht(p).

5. On one hand, if A is normal. Then for every prime p with height one, Ap is normal,
hence it’s regular. For prime with height no greater than 2, Ap is a normal domain
with dimAp 6 2. Tence it’s C.M. and we win.

On the other hand, if A satisfies S2 and R0. Then it’s reduced, and we have

Q(A) =
∏

p minimal

Ap

It suffice to show A is integrally closed in Q(A). Suppose we have

(a/b)n +
∑

ci(a/b)
i = 0

with a,b, ci ∈ A and b is a regular element. Then we have

an +
∑

cib
n−1ai = 0

It suffice to show that a ∈ bA. Since bA is unmixed of height 1 by S2. It suffice to
show for any p of height 1 we have ap ∈ bpA.(Because A/bA is reduced.) Since Ap is
regular, and hence normal. Therefore the conclusion holds.

Proposition 13. Let A be a ring s.t. Ap is regular for every p ∈ Spec(A). Then all the local rings
of A[X1, · · · ,Xn] are also regular.

Proof. It suffice to show the case n = 1 and (A, p,k) is a regular local ring. Let B = A[X].
Suppose q ∈ Spec(B) and p = q ∩A. We show that Bq is regular. Since B/pB = k[X]. We
have q = p or q = p + f(X)B, where f(X) is a monic polynomial. Let dimA = d and p is
generated by d elements. Then q is generated by d or d+ 1 elements. But obviously we
have ht(pB) > d in the first condition and ht(q) > d+ 1 in the latter case. Hence Bq is
regular and the conclusion holds.
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