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1 NORMAL DOMAINS

Definition 1 (Normal domains). Let A be an integral domain and K = Frac(A). If A is
integral closed in K then we say A is normal. For instance, a principal ideal domain is
normal.

The localizations of normal integral domains are also normal, and an integral domain is
normal iff all of its localizations are normal.

Proposition 1. Let A be an integral domain. TFAE
1. A is normal
2. Ay is normal for every prime p
3. A is normal for every maximal prime m

Proof. 1 = 2: Suppose we have
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where a € K = Frac(a) and b; € A,. Then we can find s € A\p s.t. sb; € A for all i. Then
n—1 . .
(sa)™ + Z bi-s" Y (sa)' =0
i=0

Hence we have sa € A, hence a € A,.
2 = 3:obvious. 3 = 1: Notice that the arbitrary intersection of integral closed domains
are also integral closed. And we have

A= (] Anm

m max

We now introduce a conception close to integral.

Definition 2 (Almost integral). Let A be an integral domain and K = Frac(A). We say that
k € K is almost integral over A if there exists a € A s.t. ak™ € A for all a.

Proposition 2. If k is integral over A then it's also almost integral over A. If A is Noetherian then
the converse also holds.

Proof. Suppose we have
n—1
K'Y akt=0
i=0

where a; € A. We can find b € A s.t. bk! € A for all i < n. By induction we can show that
b is exactly the element we want.

If A is Noetherian, then A[k] is a submodule of a—'A, hence is f.g. Therefore k is integral
over A. O

Definition 3 (Completely Normal). We say that an integral domain A is completely normal
if every element k € K = Frac(A) which is almost integral over A belongs to A.

In order to show that A[X] is normal (resp. completely normal) if A is normal (resp. cpt
normal), we need the following lemma.

Lemma 1. Let A be a domain and K = Frac(A). Suppose f = Y_ aix; € KIX].
1. If f is almost integral over A[X], the all x; are a.i. over A
2. If f is integral over A[X], then all w; are integral over A

Proof. 1. Suppose that there exists g = 5_ Bix' € A[X] s.t. gf* € A[X] for all i > 0. Then
oc}lﬁn € A for all i > 0. Hence «;, is a.i. over A. Hence f — oy x™ is a.i. over A and by
induction we win.



2. Suppose «; = ai/b;. Suppose P(t) = t¢+ Y id fit' s.t. P(f) = 0 and f; € A[X]. Let
Ao be the subring generated by 1,b;,a; and all the coefficients of those f;. Then Ay is
the image of Z[Xy, - - - , Xn] for some m and thus Noetherian. Since f € Frac(A[X]) is
integral over Ay[X], it’s also a.i. over Ay[X] and hence all the «; are a.i. over Ay, which

means «; are integral over A since A is Noetherian.
O

Then we can show that normality and cpt normality are stable under taking polynomial
rings.

Proposition 3. 1. Let A be a completely normal domain. Then both A[X] and A[[X]] are com-
pletely normal.

2. Let A be a normal domain. Then A[X] is a normal domain.

3. Let A be a Noetherian normal domain. Then A[[X]] is a Noetherian normal domain.

Proof. Let K = Frac(A), then K[X] is a PID. Hence it's normal and completely normal. And
a element in Frac(A[X]) that is integral or a.i. over A[X] should lie in K[X]. Now by the
previous lemma we know that all the coefficients of this element are contained in A. Thus
A[X] is normal (resp. cpt normal) if A is normal (resp. cpt normal).

In the same way we can show that f € K[[X]] is a.i. over A iff all the coefficients are a.i.
over A. And since K[[X]] is also a PID, the conclusion holds. As for the last assertion, it’s a
direct corollary of the cpt normal case. O

Remark. There exists a normal ring A s.t. A[[X]] is not normal. Here is a counterexample.

2 NORMAL RINGS

Definition 4 (Normal rings). A ring R is called normal if for every prime p C R the local-
ization R, is a normal domain.

Proposition 4. A normal ring must be reduced, because the ideal of all the nilpotent elements has
empty support.

Proposition 5. Let R be a normal ring, Then R[X] is also a normal ring. Let P C R[X] be a prime
and p = PN R. Hence R[X]p is a localization of Ry[X], hence it is a normal domain.

Proposition 6. If a ring R is normal, then it's integrally closed in its total ring of fractions Q(R).

Proof. Let R be a normal ring. Suppose u € Q(R) is integral over R. Let I = {x € Rjxu € R}.
It suffice to show I is not contained in any prime ideal of R. Let p C R be a prime. Since
R — Ry is flat, tensor R — Q(R) with R, we have R, C Q(R) ® Rp. Since R, is a normal
domain, u x 1 € Ry. Suppose ux 1 = a® 1/f for a € Rand f € R\p. Then fu— a maps to
zero in Q(R),. Hence there exists f' € R\p s.t. f'fu = f’a € R. Hence ff’ € L. Since f,f" ¢ p,
ff'¢pand IS p. O
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Then we begin to explore the structure of normal rings.
Proposition 7. A finite product of normal rings is normal.

Proof. Let R,S be normal rings. Every primes of R x S are of the form R x p or q x S.
Hence we have (R x S)qxs = Ry ,which is a normal domain. The other condition is also the
same. =

We need some results about total ring of fractions of a reduced ring before the structure
theorem.
Lemma 2. 1. If Ris a reduced ring. Then
a) if p is a minimal prime of R, then Ry, is a field.
b) R is a subring of product of fields.
¢) R =TI, yinimar Ry is an embedding into the product of fields.
d) Up minimal P is the set of zerodivisors of R.
2. Let R be a ring. Assume that R has finitely many minimal primes q1,- - - , q¢, and that Ug; is
the set of zerodivisors of R. Then the total ring of fractions Q(R) is equal to Rq, X -+ x Ry,.
Proof. 1. a) Every elements of pR, is nilpotent, and hence pR;, = 0.

b) The kernel of R — R, is p, and we have Np = 0. Hence we conclude both (b) and
(©).
c) As above.

d) If xy =0 and y # 0, then y # p for some minimal prime p. Hence x € p. Thus if
y not contained in any minimal primes we have x = 0. On the other hand, since
pR, = 0 for all minimal prime p, every element in p is zerodivisor. (Notice that
we don’t have the hypothesis of being Noetherian here.)

2. There is a natural maps Q(R) — Ry, since any nonzerodivisor is contained in R\g;.
Hence there exists Q(R) — Ry, x --- x Ry,. For any nonminimal prime p C R, it
must not contained in Ug;. Thus p must have a nonzerodivisor. Hence Spec(Q(R)) =
{a1,---,q¢}. Therefore Spec(Q(R)) is a finite discrete set and it follows that Q(R) =
A1 X - x Ay with Spec(A;) = {qi}. Moreover Aj; is a local ring, which is a localization
of Q(R) and hence R. It’s also a subset of Ry;. Hence A; ~ R..

O

Theorem 1 (The structure of normal rings). Let R be a reduced ring with finitely many minimal
primes(for instance when R is Noetherian). TFAE

1. R is normal
2. Ris integrally closed in its total ring of fractions

3. Ris a finite product of normal domains



Proof. Obviously we have 1 = 2 and 3 = 1. It suffice to show 2 = 3. By the lemma
we have Q(R) =~ [ [, minimal Rp- If R is integrally closed, then it must contain every e; =
(0,---,1,---,0). Henceit's a product of domains. Every factor of the form R/q with fraction
of field R,. Hence by the lemma below, all the map R/q — R, is integrally closed. And the
assertion holds. O

Lemma 3. Let R=[[Ryand S =[] S;i and Ry — S; be ring morphisms. s = (s;) € S is integral
over R iff each s; is integral over R;.

At the last of this section, we will show the going down theorem holds for integral
extension over normal rings. But at first we need some technical preparation. For the
details of the proof, here is the reference.

Definition 5 (Integral over an ideal). Let ¢ : R — S and I C R be an ideal. We say s € S is
integral over I if there exists P = x4 + Y icd a;x' with coefficients a; € 19t s.t. P®(g)0 on S.

We give some characterization of the elements that integral over L.
Lemma 4. Let ¢ : R — S and I C R be an ideal.

1. Let A = Y I™t' C R[t] be the subring of polynomial ring generated by R® It. s € S is
integral over 1 iff st € S[t] is integral over A.

2. The set of elements of S that are integral over 1 form a R-submodule of S. Furthermore, if
s € S in integral over R and s’ integral over 1, then ss' is integral over 1.

3. If ¢ is integral. Then every element of 1S is integral over 1.

Lemma 5. Let K be a field. And ap,---,an_1,b0, -+, bm_1 € K. If the polynomial x™ +
Y ion @ixt divides x™ + Y X in K[X]. Then

1. Qo,--- ,an_ are integral over any subring Ry of K containing the elements by, - - - , b1

2. each a; lies in \/(bo, -+, bm_1)Rfor any subring R C K containing the elements ay, - - - , an_1
and bo,- e ,bm,p

Proposition 8. Let R C S be an inclusion of domains. Assume R is normal. Let g € S be integral
over R. Then the minimal polynomial of g has coefficients in R.

Now we conclude the going down theorem holds.

Theorem 2 (Going down for integral over normal rings). Let R C S be an inclusion of domains.
Assume R is normal and S integral over R. Let p C p’ C R be primes. Let q' be a prime of S with
p’ = RN q’. Then there exists a prime q with q C q such that p =RNq.
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Proof. Notice that if p = ¢~ '(pS), then we have injection Rp/pRy — Sp/pSy, and hence
S ® k(p) # 0O, thus p is in the image of Spec(S) — Spec(R) and the conclusion holds. Hence
it suffice show that p = ¢! (pSqr)-

Let z = y/g € pSyy NR, where y € pS and g € S\q'. Since pS$ is integral over p by the
lemma, there exists a monic polynomial P = x™ + } ;__ bix' with b; € p s.t. P(y) = 0.
Also by the lemma, the minimal polynomial of g over K has coefficients in R. Write it as
Q=x"+2 a;x'. Note that not all a; € p, otherwise g" € q’.

Since y = zg we see that Q' = x™ +za, 1X™ +--- +z"qy is the minimal polynomial for
y. Hence Q' divides P and we see that Zla,_1 € V(bo, -+, bpmq) Cpforallj=1,--- n
Because not all a; € p, we conclude z € p as desired.

]

3 REGULAR LOCAL RINGS

Definition 6 (Orders and Leading Terms). Let A be a ring and I be an ideal with NI = (0).
Then for each a # 0 € A, we define the order of a to be the maximal integral s.t. a € I"
and a ¢ I"*!. We have ord(a+b) > min(ord(a), ord(b)) and ord(ab) > ord(a) + ord(b)).
Let A’ = gtl(A) = @I"/I""!. We define the leading term of a to be the imagine a* of a in
/v,

Let Q be an ideal of A, the Q*c is a graded ideal of A*. We define A = A/Q and
I1=1+Q/Q. Then we have gr'(A) = gr'(A)/Q*.

Theorem 3 (Krull). Let A, 1, A’ be as above. Then

1. If A’ is a domain, so is A.

2. Suppose that A is Noetherian and I C rad(A). Then if A’ is a normal domain, so is A.
Remark. It can happen that A is a normal domain while A’ is not a domain.

Proposition 9. Let (A, m, k) be a Noetherian local ring. Then A is regular iff gr(A) is isomorphic
to the polynomial ring K[Xy,--- , Xq4l.

Proof. On one hand, if gr(A) is isomorphic to k[Xy, - - -, Xg4]. Then we have rankm/m? = d
and dim A = d. Hence it’s regular.

On the other hand, let k[Xy,---, X4l — gr(A) be surjective with kernel I, which is a
homogeneous ideal. Suppose f € I is a homogeneous polynomial of deg ny. Then for n
large enough we have ¢(A/m™1) < ("1%) — (""9 ™), hence it is a polynomial of deg less
than d — 1. Thus it contradicts our assumption. O

Proposition 10. Let (A, m) be a reqular local ring and x1,- - - ,xq a regular system of parameters.
Then

1. A is a normal domain



2. (x1,-++,%i) = py is a prime ideal of height i for each i < d, and A/p; is a regular local ring
of dimension d — 1.

3. X1, ,Xq is an A-reqular sequence. Hence A is a Cohen-Macaulay local ring.

4. If p is an ideal of A and A/y is regular with dimension d — 1, then there exists a regular
system of parameters yi,--- ,Yq s.t. p =y, -, Yi.

Proof. 1. It’s the corollary by the Krull’s theorem and the proposition above.

2. We have dim A/p; = d — 1. Therefore A/p; is regular and hence by (1) we know p; is
a prime.

3. It is a direct conclusion by 2.

4. We have d —1i = rankgm/m? — rankm? + p/m?, hence i = rankgm? + p/m?2. We
can choose i elements yi,--- ,y; € p that generated m? + p/m?. And d — i elements
Yitl, -+ ,Yq in m s.t. yy,--- ,yq generated m. Thus we get a system of parameters.
Since (y1,---,yi) C p and both of them have dimension d —1i. We conclude p =

(Y1, -+, yi)-
]

3.1 Reqular local ring of dimension 1
Proposition 11. A regular local ring of dimension 1 is a discrete valuation ring, and vice versa.

Remark. The only Noetherian valuation rings are discrete valuation rings.

We still have another characterization of regular local ring of dimension 1. Namely a
Noetherian local ring of dimension 1 is regular iff it’s normal. But we need to show a few
lemmas before the proof.

Lemma 6. 1. Let A be a Noetherian domain and K = Frac(A). For any ideal 1 # 0, we define
["={xeKxIecAL Lt 0#ac Aandp € Assa(A/aA), then p~' # A.

2. Let (A, p) be a Noetherian local domain s.t. p # 0 and pp~' = A. Then y is a principal ideal,
thus A is reqular of dimension 1.

Proof. 1. There exists b € A s.t. (aA :b) =p. Hence (b/a, C A and b/a ¢ A.

2. Since Np™ = 0, we have p # p?. Let a € p —p%. Then ap™' C A and if ap~' C p, then

aA = ap~'p C p?, contradicting the assumption. Thus ap~' = A. Hence aA = p.
O

Theorem 4. Let (A, p) be a Noetherian local ring of dimension 1. Then A is reqular iff it's normal.



Proof. Only if: Trivial.

If: It suffice to show pp~' = A. Suppose that pp~' = p, then p(p~')" = p C A for any
n > 0. Hence all the elements of p_1 are almose integral over A, hence integral over A since
A is Noetherian. Therefore we have p~—! = A. Since dim A = 1, we have p € Ass(A/aA) for
any a # 0. Hence p~! # A and we win. O]

Corollary 1. Let A be a Noetherian normal domain. Then any non-zero principal ideal is unmixed,

and we have
ht(p)=1

Ifdim A < 2 then A is C.M.

Proof. Let a € A and p € Ass(A/aA). WLOG we assume that (A.p) is local. Then p~ ! #£A.
If ht(p) > 1 then ????22?2?2?22272? ]

3.2 Serre’s conditions

Definition 7 (Serre’s Conditions). Let A be a Noetherian ring, we define the following
conditions:

(Sx) for any prime p we have deptha, A, > min{k, ht(p)}.
(Ry) for any prime p with ht(p) < k, then A, is regular.
We list a few conclusions about Serre’s conditions:
Proposition 12. 1. A satisfies Sy iff Ass(A) has no embedded primes

2. A satisfies S iff both Ass(A) and Ass(A/fA) for any nonzerodivisor f € A have no embedded
primes

3. A satisfies Sy for every X iff it’s C.M.
4. A satisfies Sy and Ry iff it's reduced
5. A satisfies Sy and Ry iff it’s normal

Proof. 1. Suppose Ass(A) has no embedded primes, then any prime p with ht(p) > 1 has
at least one nonzerodivisor of A. Otherwise it should be contained in some minimal
prime. Thus the condition S; holds. Conversely if S; holds, then pA, has at least one
nonzerodivisor for any prime p with height no smaller than 1. Therefore we have
pAp & Ass(Ay) and hence p ¢ Ass(A). Thus Ass(A) has no embedded prime.

2. Notice that any prime p in A/fA corresponds to a prime p’ with ht(p’) = ht(p) + 1.

3. Trivial.



4. If A is reduced, then A, is a field for every minimal prime p. And we have

U p = The zerodivisors of A
p minimal
Therefore A has no embedded primes.

Conversely, if A satiesfies S7 and Ry, then we show A, is reduced by induction on
ht(p).

5. On one hand, if A is normal. Then for every prime p with height one, A, is normal,
hence it’s regular. For prime with height no greater than 2, A, is a normal domain
with dim A, < 2. Tence it’s C.M. and we win.

On the other hand, if A satisfies S; and Ry. Then it’s reduced, and we have

Q(A)Z H Ap

p minimal

It suffice to show A is integrally closed in Q(A). Suppose we have
(a/b)*+ ) cila/b)' =0
with a, b, c; € A and b is a regular element. Then we have
a + Z cib"at =0

It suffice to show that a € bA. Since bA is unmixed of height 1 by S,. It suffice to
show for any p of height T we have a, € byA.(Because A/bA is reduced.) Since A, is
regular, and hence normal. Therefore the conclusion holds.

O

Proposition 13. Let A be a ring s.t. Ay is regular for every p € Spec(A). Then all the local rings
of A[Xq,- -+, Xn] are also regqular.

Proof. It suffice to show the case n = 1 and (A, p, k) is a regular local ring. Let B = A[X].
Suppose q € Spec(B) and p = gN A. We show that B is regular. Since B/pB = k[X]. We
have q = p or q = p + f(X)B, where f(X) is a monic polynomial. Let dimA = d and p is
generated by d elements. Then q is generated by d or d 4 1 elements. But obviously we
have ht(pB) > d in the first condition and ht(q) > d + 1 in the latter case. Hence By is
regular and the conclusion holds. O
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